Grease Sampling and Analysis for Wind Turbines and other Bearing and Gear Applications

Richard N. Wurzbach MRG Labs, York, Pennsylvania, USA rwurzbach@mrgcorp.com

Lisa Williams MRG Labs, York, Pennsylvania, USA

Evan Bupp MRG Labs, York, Pennsylvania, USA

Summary

Oil analysis is well established as a routine tool to optimize maintenance activities, improve reliability and equipment life and prevent component failures. As part of a comprehensive Condition Based Maintenance program, lubricant analysis is an effective complement to other diagnostic technologies such as vibration analysis, infrared thermography, ultrasonic detection and motor circuit evaluation. However, when the equipment is grease lubricated rather than oil lubricated, the important lubricant analysis piece is often left out of the mix. The reasons for this include challenges in obtaining samples that can be trended, as well as the large sample volumes required for most current standardized tests for greases. Unlike oil, grease does not typically flow uniformly or circulate in the machine, so particulate and contaminants are present in varying concentrations in the grease. When a grease sample is obtained, it cannot be simply agitated to suspend and distribute particulate, as is the case with oil. These fundamental differences present barriers to acceptance of grease analysis as a routine aspect of diagnostic monitoring programs. New tools have been developed for improved sampling techniques and grease analysis tests have been added to address concerns of sample trending as well as accommodating small sample sizes. These include rheometry of greases, for which DIN standards exist and ASTM standards are under development. Other new tests are emerging, including die

Figure 1: Grease sampler installed in a motor test stand

extrusion, to efficiently prepare samples for analysis. Novel sampling aids are being introduced to permit consistent extraction of samples from locations that improve the representative nature of the sample.

This paper will discuss how these new technologies can produce improvements in reliability and reductions in lubrication costs through condition-based greasing and trending of wear levels, with samples as small as 1 gram. Advantages of preparing substrates with a thin-film grease deposition are discussed for purposes of more streamlined and uniform sample preparation for subsequent analysis. A colorimetric method for evaluating characteristics of new greases, and chemometric methods for evaluating contaminant levels for in-service greases are also discussed. Wind turbines, motors, motor operated valve gearboxes, and robotic assembly examples will be given for these cost-benefits, and case studies will be shared that demonstrate the return on investment in routine grease sampling and used grease analysis technology.

If you are interested in reading the full white paper, please reach out to <u>rjanosky@mrgcorp.com</u> for the full document.